

downpour – OpenStack Tenant Data Migration Tool

downpour exports tenant data from an OpenStack cloud to create a set
of Ansible [https://www.ansible.com] playbooks for importing the data into another cloud.

Note

The project is in a very very early prototyping stage.

Contents

	Background

	Installation
	Prerequisites

	Installing with pip

	Cloud Access Credentials

	Usage
	1. Identify Resources to Export

	2. Exporting Resources

	3. Importing Resources

	4. Decomissioning Resources

	Resource File Format
	keypairs

	images

	volumes

	servers

	Contributing
	Gerrit Process

	GitHub Process

	Bug Reports

	Glossary

Background

Downpour is being created to solve the problem of moving workloads
between clouds. It is only one of several possible approaches to the
problem, and fits into a very specific niche at the hard end of the
range of use cases.

	
	Easy
	Moderate
	Hard

	Ownership
	Operator
	Admin
	Tenant

	Backend
	Shared storage
	Fast interconnect
	Shared nothing

	Applications
	One per tenant
	Multi-app with naming conventions
	Rats nest

Downpour does not assume the user has an special access to the cloud,
either as an operator with access to backend systems or via admin
APIs.

Downpour does not assume that the source and destination clouds are
connected in any way. Not only is it possible to move data between
clouds that do not share backend services, it is possible to move data
between clouds that cannot be accessed from the same system at the
same time.

Downpour does not make any assumptions about the mapping between
applications and tenants. It is possible to extract only part of the
resources owned by a tenant. The grouping is completely up to the
user, and can represent an application or a single node in a multi-VM
configuration.

Downpour does not assume the source and destination clouds are build
using the same architecture or configured in the same way. As long as
the two clouds pass the standard OpenStack interoperability tests, it
should be possible to use Downpour to move your workload.

These requirements do come with trade-offs, the impact of which will
depend on how “cloud native” an application really is. For example,
the benefits of copy-on-write images may be lost during the migration
if the entire image from each VM needs to be uploaded into the new
cloud. The UUIDs associated with resources will also change, since
there is no way to guarantee the assignment of a specific UUID for
resources created in a separate cloud.

Installation

Prerequisites

Downpour is written to take advantage of features of Python 3.5, so
you will need a Python 3.5+ interpreter installed.

Installing with pip

At the command line:

$ pip install os-downpour

Note

The dist name for downpour is os-downpour.

Cloud Access Credentials

downpour uses os-client-config [http://docs.openstack.org/developer/os-client-config/] for settings related to accessing
the cloud. Fill in your clouds.yaml or use the environment
variables or command line arguments provided.

Usage

Downpour uses a four step process. Between each step it is possible to
stop and modify the data that has been prepared to pass to the next
step.

1. Identify Resources to Export

The first phase of using Downpour is to identify exactly what
resources will be exported from the cloud to build the resource
file. This step can be performed by hand by creating the required
input file in a text editor, or the file can be build using the
query command.

The resource file is a YAML file with sections for the principle
resource types, keypairs, images, volumes, and
servers. Resources are identified by name, and may also include
extra parameters to control how the export and re-import operations
are performed. For example, this resource file causes the
downpour-demo-tiny server to be exported but when it is recreated
a different ssh key is used to provide access to log in.

Resource file for downpour using the instance created in tiny.yml.
servers:
 - name: downpour-demo-tiny
 # Create the server using a separate key than
 # it was created with in tiny.yml.
 key_name: downpour-demo2
keypairs:
 - name: downpour-demo
 - name: downpour-demo2
images:
 - name: cirros-0.3.5-x86_64-disk

The downpour query command also can be used to find resources
visible in the cloud, and add them to the resource file. It supports
wildcard patterns in names and other criteria for filtering
resources. For example, this command finds all servers with “tiny”
in their name.

$ downpour query --server-name '*tiny*' export.yml

See also

Resource File Format includes more details about resource files.

2. Exporting Resources

The second phase of operation is to actually export the resources from
the cloud using downpour export, passing the resource file as
input. Downpour starts by processing the resources listed in the file
explicitly, and identifies any extra dependencies needed to recreate
the configuration of those resources. For example, the networks,
subnets, and security groups used by a server are exported
automatically, as are the volumes attached to the server.

$ downpour export export.yml ./export/

The output for the export process is an Ansible [https://www.ansible.com] playbook to recreate
the resources, with all relationships intact. For images, volumes, and
servers with the save-state flag set to true, the content of the
resource will be downloaded and saved to the output directory where it
can be used to recreate the resource.

3. Importing Resources

The import phase uses ansible-playbook to run the playbook created
by the exporter.

Note

Although Downpour currently requires Python 3.5 or greater, Ansible
is a Python 2.x application. If you are using pip and
virtualenv to install the tools, you will need to install them
in separate virtual environments.

Ansible uses uses os-client-config [http://docs.openstack.org/developer/os-client-config/] for settings related to
accessing the cloud. The simplest way to configure the cloud is via a
clouds.yaml file, but any mechanism supported by Ansible will
work. The credentials used for the import phase do not need to be the
same as the export phase. In fact, they’re likely to be completely
different because they will refer to a separate cloud’s API endpoints.

Downpour supports some customizations during export, such as changing
the ssh key to be used for accessing a server. Other changes can be
made by editing the playbook before running it.

The playbook produced by Downpour creates each resource, then adds a
line to a file uuids.csv to map the UUID in the source cloud to
the UUID in the target cloud. This file may be useful for updating
scripts or other configuration that rely on the UUID instead of a
unique name for the resource.

"Resource Type","Resource Name","Old","New"
"security group","downpour-demo","6deea469-54bd-4846-b12a-79fa6b482280","a4b80ffc-bc51-485c-915a-9ba9a7b4dcf0"
"volume","downpour-demo-tiny","256868c6-441f-4cd3-96fd-bda92c33822c","62e5616c-9a8c-44e2-bd14-4685b905ea94"
"security group","downpour-demo","3c7dcb77-d9ac-4af1-ba95-3f5d89a85227","a4b80ffc-bc51-485c-915a-9ba9a7b4dcf0"
"volume","downpour-demo-tiny","a6192546-c36e-4bee-ad00-8229e0b0efc5","62e5616c-9a8c-44e2-bd14-4685b905ea94"
"network","private","56a86bdb-13b2-4c9f-b8f5-a942d52602b5","f3027502-e4a2-4610-81fb-c6df99ead5c3"
"subnet","ipv6-private-subnet","8d736fe4-6b8f-4bf5-a38e-b511dce21f7f","01025e33-703b-4aa4-b6ec-80036bb3679b"
"subnet","private-subnet","e6baf9f4-09b5-4292-8236-3cca609ec2a3","2f9a1686-8125-4316-acd3-dbee51c44c1d"
"keypair","downpour-demo","downpour-demo","downpour-demo"
"image","cirros-0.3.5-x86_64-disk","570ec7bd-011b-4fbe-9968-626225654a7f","570ec7bd-011b-4fbe-9968-626225654a7f"

4. Decomissioning Resources

Downpour is not a live-migration tool, and it does not delete any
resources from the source cloud. This allows you to perform
application-specific migration (such as a final database sync) before
updating any load balancers or DNS records and deleting old
information.

Resource File Format

A Downpour resource file is a YAML file containing explicitly
identified resources to be exported, along with instructions for how
to handle the export.

keypairs

The keypairs section lists the names of the keypairs to be
exported. Keys associated with servers are exported automatically, but
if it is important to move keys not in use by any of the servers those
keys can be listed separately.

Each item in the keypairs list should be a mapping with a value for
name.

keypairs:
 - name: downpour-demo

images

The images section lists the names of the images to be exported.

Each item in the images list should be a mapping with a value for
name.

images:
 - name: cirros-0.3.5-x86_64-disk

volumes

The volumes section lists the names and settings for the unattached
volumes to be exported. This section should not include volumes
attached to servers, because those are exported as part of exporting
the server definition.

Each item in the images list should be a mapping with a value for
name and an optional boolean value for save_state, indicating
whether the contents of the volume should be exported. If
save_state is false, a new volume with the same name and size will
be created but it will be empty. The default is to save the contents
of the volume.

volumes:
 - name: downpour-demo-unattached
 save_state: false

servers

The servers section lists the names and settings for the virtual
machines to be exported.

Each item in the images list should be a mapping with a value for
name. It can also contain an optional boolean value for
save_state, indicating whether the contents of the VM should be
exported. If save_state is false, a new VM with the same name and
flavor will be created, but it will not contain any of the files from
the current VM. The default is to save the contents of the volume.

If an optional key_name setting is given, the new VM will be
initialized using that ssh keypair instead of the one already
associated with the server. The keypair does not need to exist on the
source system.

servers:
 - name: downpour-demo-tiny
 # Create the server using a separate key than
 # it was created with in tiny.yml.
 key_name: downpour-demo2

Contributing

There are two ways to contribute to downpour, using OpenStack’s gerrit
system and GitHub. The repository managed via gerrit and visible at
https://git.openstack.org/cgit/openstack/downpour is the canonical
repository.

Gerrit Process

If you would like to contribute using the standard OpenStack tools and
processes, you should follow the steps in this page:

http://docs.openstack.org/infra/manual/developers.html

If you already have a good understanding of how the system works and your
OpenStack accounts are set up, you can skip to the development workflow
section of this documentation to learn how changes to OpenStack should be
submitted for review via the Gerrit tool:

http://docs.openstack.org/infra/manual/developers.html#development-workflow

GitHub Process

If you would prefer to use GitHub, you may also submit pull requests
to https://github.com/dhellmann/downpour. I will do the work to push
the patch through the OpenStack review process on your behalf. That
may involve changing some of the git metadata, such as committer. I
will try to keep the author field intact so you retain credit. Please
add the DCO signature to your commit messages, just to be safe.

The repository https://github.com/openstack/downpour is synced from
gerrit. Pull requests to that repository will be closed automatically.

Bug Reports

Bugs should be filed on Launchpad, not GitHub:

https://bugs.launchpad.net/os-downpour

Glossary

	resource file

	A YAML file containing explicitly identified resources to be
exported. See Resource File Format for more details.

Index

 R

R

 	
 	resource file

 _static/plus.png

nav.xhtml

 Table of Contents

 		downpour – OpenStack Tenant Data Migration Tool

 		Background

 		Installation

 		Prerequisites

 		Installing with pip

 		Cloud Access Credentials

 		Usage

 		1. Identify Resources to Export

 		2. Exporting Resources

 		3. Importing Resources

 		4. Decomissioning Resources

 		Resource File Format

 		keypairs

 		images

 		volumes

 		servers

 		Contributing

 		Gerrit Process

 		GitHub Process

 		Bug Reports

 		Glossary

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

